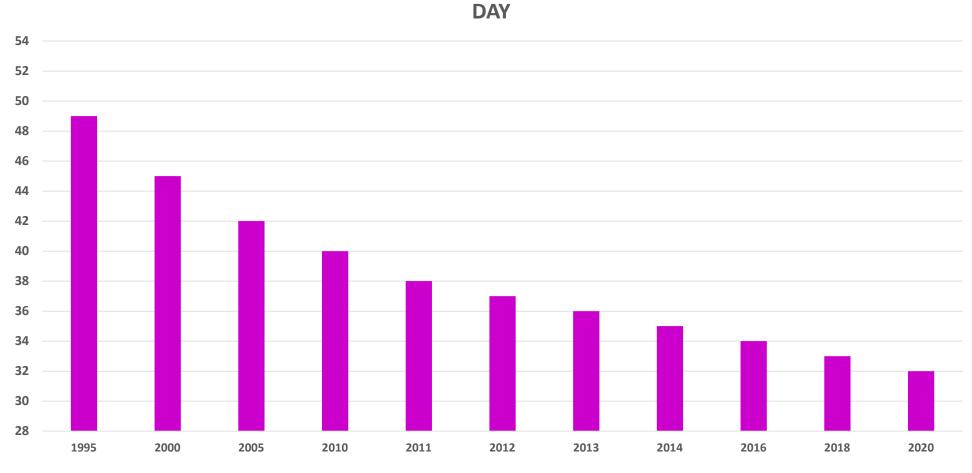
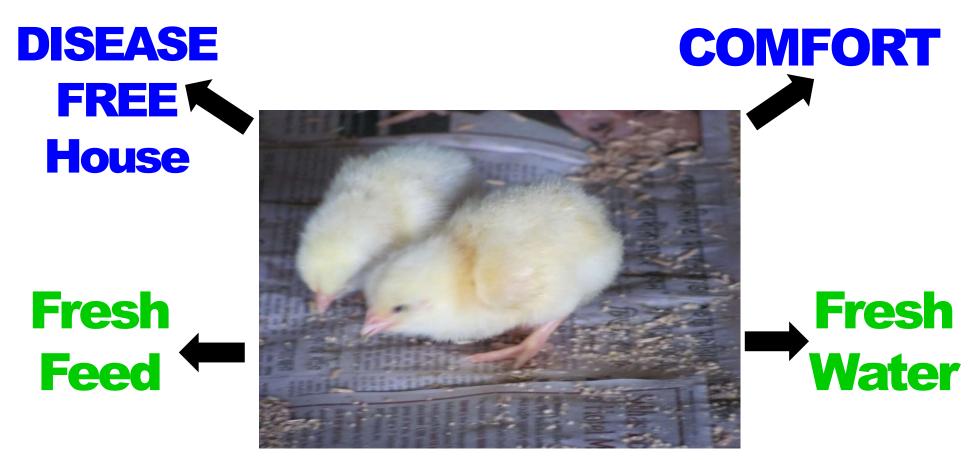

GOOD EVENING **WELCOME** \mathbf{TO} POULTRY FAMILY

Commercial Broiler Management


Commercial Broiler Management


02-08-2020

No of Days Required to reach 2 Kg Body Wt

Basic Need of Chicks

02-08-2020

Requirement of Today's Broiler Chicks

Nutrition

Good FEED # Feed Handling # Gut Health Management Husbandry Practice

Infrastructure
Temperature
Ventilation
Water Quality
Day-to-day
Management
Welfare

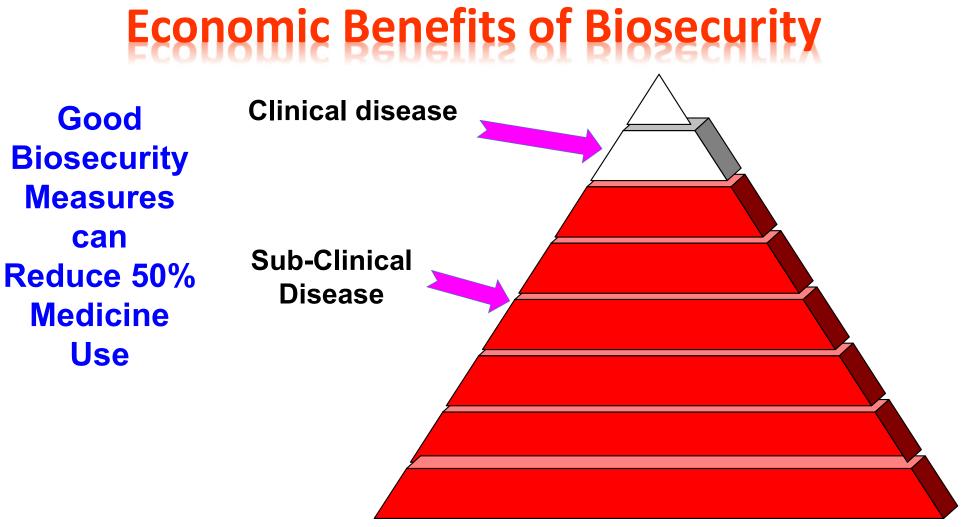
Biosecurity

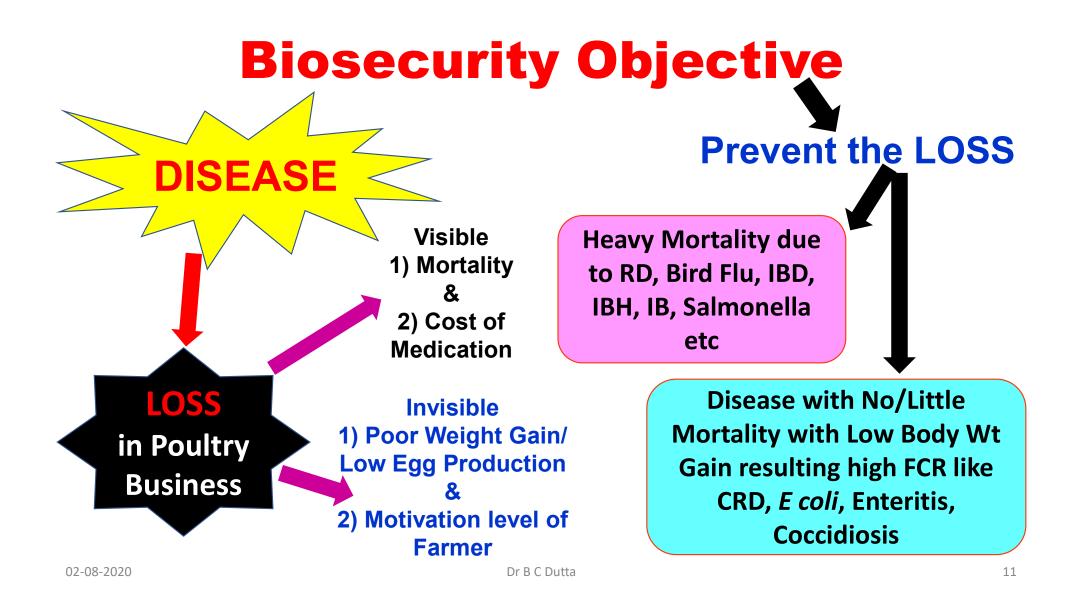
Disease Free Environment

- **# Health Management**
- **#** Vaccination
- **# Immunity Improvement**

02-08-2020

Disease Free House Biosecurity


A set of protective measures to Prevent Entry of pathogens in Poultry Production Area and /or Prevent their transfer or spread within / to other Poultry Production Site

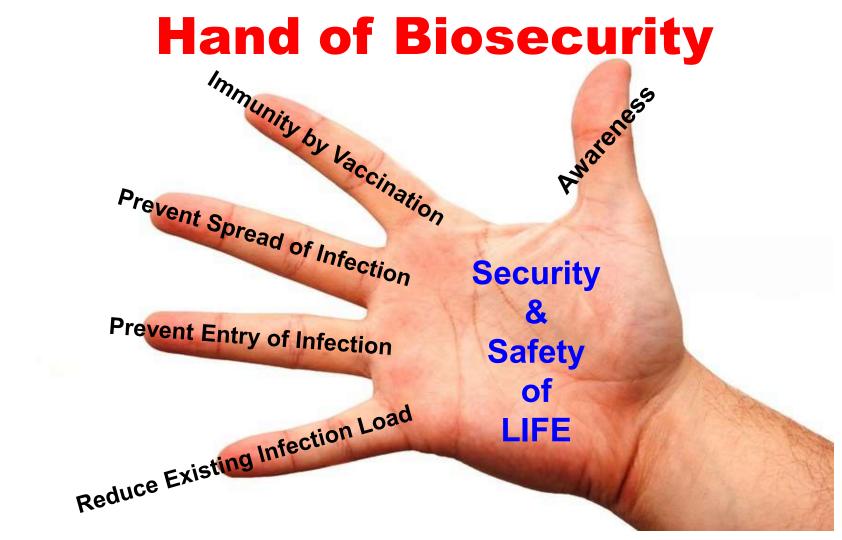

02-08-2020

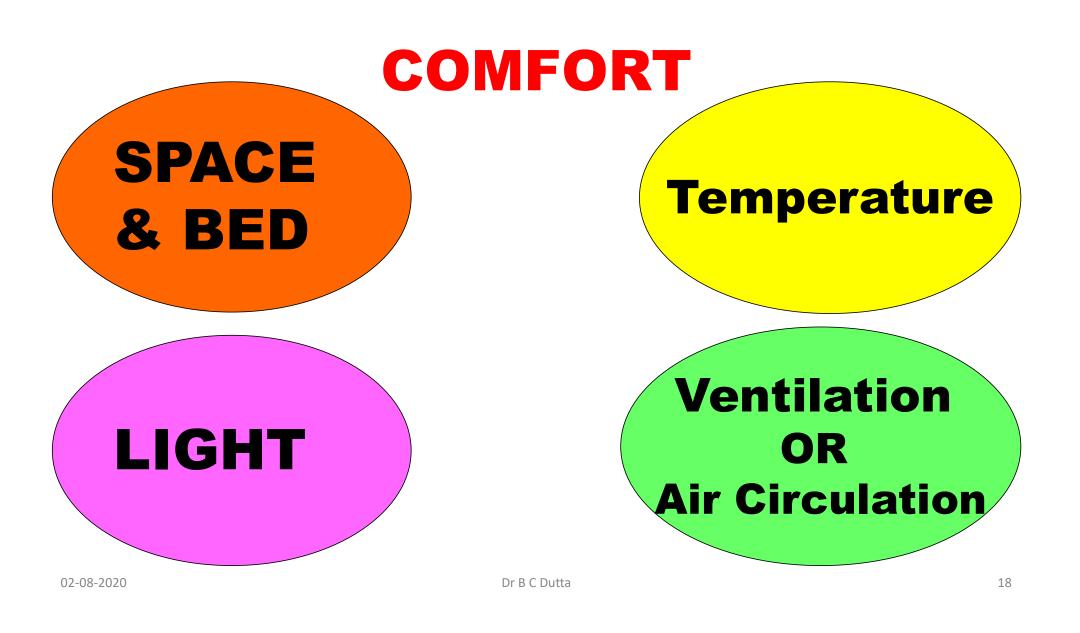
Dr B C Dutta

Bio-secured Farm

Biosecurity – NOT Like these

Biosecurity – Like these


Biosecurity – Like these



02-08-2020

Space & Bed (Litter) Management

Floor Space Needed for each Broiler depends on

- Targeted Live weight & Age of Harvesting
- Season & Climate
- Type & System of Housing and Equipment, particularly Ventilation

Under Open Farming System (No EC) having Excellent Ventilation with BOTH SIDE OPEN 1.580 Kg Broiler Meat per Sq Ft is Possible

1 st Week	0.3 – 0.4 sq ft
2 nd Week	0.5 - 0.6 sq ft
3 rd Week	0.7 – 0.8 sq ft
4 th Week onwards	1.3 – 1.5 sq ft

Space & Bed (Litter) Management

In EC Shed, Stocking Density Influences

- Broiler Performance
- Uniformity
- Bird Welfare
- Profitability

Quality of Housing & EC system determine the stocking density; <u>Casual Increase in</u> <u>stocking density must be</u> <u>complemented with</u> <u>Ventilation, Feeding space</u> <u>& Drinker availability</u>

Targeted Body Wt	Kg Broiler/ Sq Ft
Below 2.04 Kg	2.97
2.04 – 2.49 Kg	3.44
Above 2.49 Kg	3.90

02-08-2020

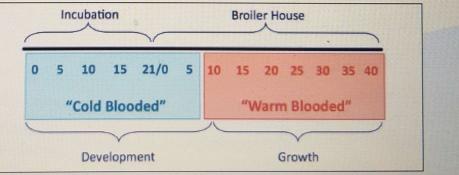
Space & Bed (Litter) Management

Poor Space Results

 Over-Crowding • Huddling • Dampness of litter • Competition • Poor Growth & High FCR • Growth & Multiplication of Micro-organisms • Death due to Starvation

Temperature Management

It is crucial for broiler performance to ensure a proper development of the chick (incubation + first 10 days of grow-out) especially because the chick does not have the ability to properly



control its body temperature ('Cold Blooded') during this period.

Winter temperatures pose an additional challenge to the development of chick and the subsequent adult broiler. This is mainly due to poor temperature control and also to compromised ventilation in the broiler houses. Good stockmen have the responsibility to maintain a good

environment for the chick to maximize the birds' genetic potential.

02-08-2020

Temperature Management

Age (Days)	Whole-House Brooding Temp °C (°F)	Spot Brooding Temp °C (°F)	
(20)01		Brooder Edge (A)	2 m (6.6 ft) from Brooder Edge (B)
Day-old	30 (86)	32 (90)	29 (84)
3	28 (82)	30 (86)	27 (81)
6	27 (81)	28 (82)	25 (77)
9	26 (79)	27 (81)	25 (77)
12	25 (77)	26 (79)	25 (77)
15	24 (75)	25 (77)	24 (75)
18	23 (73)	24 (75)	24 (75)
21	22 (72)	23 (73)	23 (73)
24	21 (70)	22 (72)	22 (72)
27	20 (68)	20 (68)	20 (68)

Temperature Management

Because of their high surface-to-body mass ratio, chicks lose heat very quickly. Maintaining the proper ambient temperature ensures chicks stay healthy and reach their full weight potential.

Age 1 to 7 Days >27 Degree Celsius Plus Temp

Age 27 Day onward (7 + 20) > 20 Degree Celsius

Temperature Management

COLD STRESS	COLD	OPTIMUM (Ambient)	WARM	HEAT STRESS
Below 10°C	10 – 18°C	18 – 24 °C	25 – 30°C	Above 30°C
Exhaustion	Adjustment	Comfort Zone	Adjustment	Exhaustion

To achieve maximum performance, poultry house Temperature must be kept consistently within the bird's thermo-neutral or comfort zone

Otherwise, the bird will expend additional energy to regulate its Body Temperature resulting poor Body Weight Gain & Poor FCR

The bird's comfort zone changes with age & is influenced by • Body Weight • Ventilation • Feed Intake • Relative humidity & • Ambient temperature

Ventilation is the Min Amount of Air Volume required to maintain full Genetic Potential by ensuring sufficient Oxygen supply while removing the waste products of growth & combustion from the environment

OBJECTIVE

- To Provide Oxygen required for growth
- To Remove Water from faeces & vapour from broilers respiration to

(At 10 days age, 15 broilers produce almost 1 litre water/Day, of which 25 to 40 % from faeces) maintain the RH throughout the growing period and to maintain Good Litter condition

- To Remove Excess heat created by birds and litter
- To Remove unhealthy gas: CO2, NH3, etc

Air quality is critical during the brooding period. Proper ventilation is required to maintain correct Temp and RH.

Improper ventilation leads to reduced air circulation, accumulation of Ammonia which results low Feed Intake, reduced Growth rate, Loss of Cilia in Trachea, which in turn leads to Sneezing & other abnormal Respiratory Sounds

Inadequate ventilation leads to high incidence of Ascites & Chronic Respiratory Disease.

02-08-2020

Effects of Ammonia Exposure (Calculated at Birds level)

Target	<mark>< 10 ppm</mark>
Human detection	> 5 ppm
Damage of Respiratory tract Cilia	20 ppm (3 min)
Poor Body weight & High FCR	25 - 51 ppm
Eye damage/Starvation/Dehydration	46 - 102 ppm (12 hrs)

02-08-2020

Manufacturing	Storage & Distribution	Application & Usage
 # Formulation # Raw Material # Production Efficiency a) Grinding, b) Pre-mixing, c) Pelleting & d) Conditioning 	# Godown Quality # Storage System # Storage Time	<pre># Health Management - General / Intestinal # Feeding Frequency # Feeding Technique # Drinking Water Quality</pre>
# Physical Presentation a) Particle Size b) Hardness	:	# Equipment Quality # Farm Sanitation

c) Dust% &d) Moisture%

Feeding Tips

- Use Aluminum bucket to give feed from bag
- Minimum 3 times feeding daily
- Fill feed 1/3 of a feeder at a time
- Cleaning Cone every time after feeding
- Cylinder cleaning every week

02-08-2020

Feeder Drinker Alignment

FEED

Feed bags must be stacked with a gap of 1 feet from the walls

➢ Feed bags to be stacked with a gap of 1 ft from the ground using wooden pallets

the ground using wooden pallets **STORAGE** → First in First out (FIFO) system to be followed for feed distribution

A 253PH

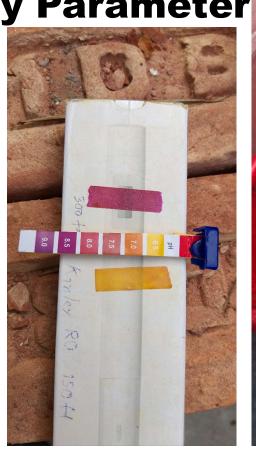
02-08-2020

02-08-2020

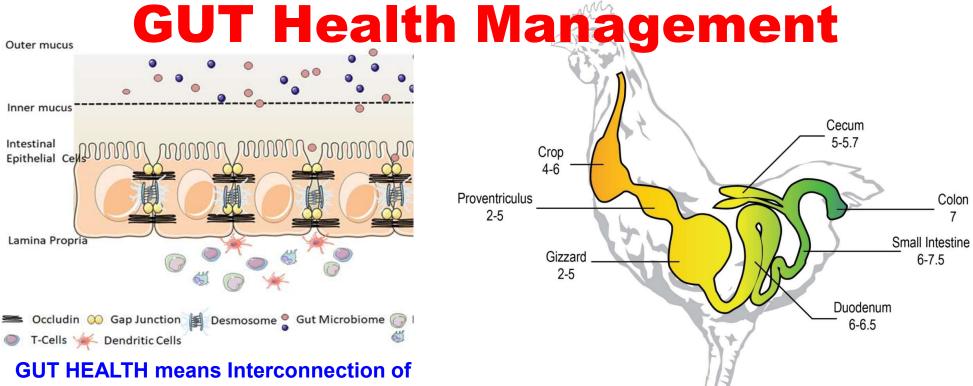
Drinking Water Management

- ≻70% of Chicken Body Weight is Water
- For an optimal growth the Chicken should have free and convenient access to water
- > 1 day without Water in Broiler results zero Wt Gain
 & No Egg in Layer
- Water is an important nutrient, consumed in greater quantity (5 times of Maize) than any of the other nutrient
- Birds may Die rapidly from lack of water than due to lack of any of the other nutrients
- The Body Requirement of water varies with Age, Health, climate and Feed type

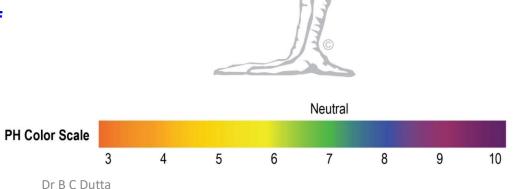
Drinking Water Management


- Water is the major component of blood and plays main role in transporting Nutrients & Oxygen to the cells and carrying waste away
- Water is directly related with all physiological activities like Digestion, Respiration, Excretion, Production, Movement, Thermoregulation

Ambient Temperature °C/°F	Feed vs Water Intake in Broiler
4°C / 39°F	1 : 1.7
20°C / 68°F	1:2
26°C / 79°F	1 : 2.5
30°C / 86°F	1:3.0
37°C / 99°F	1 : 4.5


Drinking Water Management Water Quality Parameter

- Presentation: Clear
 & Odourless
- Contamination: Free from Chemical & Bacterial contamination
- TDS/Hardness: <
 200
- pH: 5 6



02-08-2020

these all 3 factors

- Good Structural Integrity of the Intestine; both gross & microscopic
- Healthy balance & Diversity of Gut Microbiota
- Healthy Status of Gut Immune system

GUT Health Management Factor effecting Gut Health

- **INCUBATION:** Hatchery Temperature maintenance affects Gut development
- **BROODING:** Chick level Temp, early & easy access to feed & water •
- WATER QUALITY: pH, Hardness (specially Fe), contaminations
- STRESS/ WELFARE: Stocking density, Temp, Ventilation, Space •
- FEED: Feed form, Access to Feed, ٠ Feed Changes, MYCOTOXIN
- **NUTRITION: Feed component, Particle** size, Micro-nutrients, Enzymes, Anti-**Nutritional factors**
- LITTER: Material, Moisture%, Litter ٠ Ammonia
- •
- **INFECTIONS:** Bacterial, Viral, Parasitic
- **GUT MICROBIOTA: No of Species, Popu** • **Commensal & pathogenic, Competitive**
- **BIOSECURITY: Hygiene, Sanitation**

02-08-2020

GUT Health Management INCUBATION & BROODING on Gut Health

Early & Easy access of Feed & water helps developments of intestine; which directly related to brooding efficiency, Temperature, Ventilation, Space & Lighting Hatchery Temperature control directly affect the length of Villi & depth of crypts, specially in Single Stage machine which finally impact broiler performance

02-08-2020

Mycotoxin and Gut Health

No. of Mycotoxins per Sample

0%

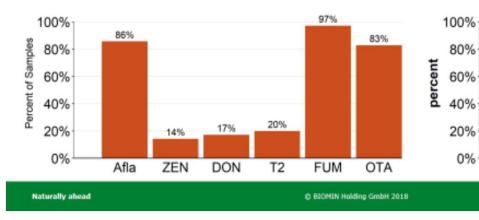
<LOD

6%

1

94%

>1 mtx


≣Biomin≣

•

India Finished Feed Jan 2020 to Mar 2020

Total Risk Level: 97%*	Afla	ZEN	DON	T2	FUM	OTA	
Number of samples tested	35	35	35	35	35	35	and the second
% Contaminated samples	86%	14%	17%	20%	97%	83%	A COLORADO A
% Above risk threshold	86%	9%	17%	0%	57%	37%	A REAL PROPERTY.
Average of positive (ppb)	84	100	385	30	889	14	- WENSSAM
Median of positive (ppb)	26	87	380	32	559	9	A REAL ADD
Maximum (ppb)	1252	261	480	37	4939	43	


Prevalence of Mycotoxins Detected

Loose Dropping & Feed passage is almost common in Broiler Farms

Mycotoxin Effect:

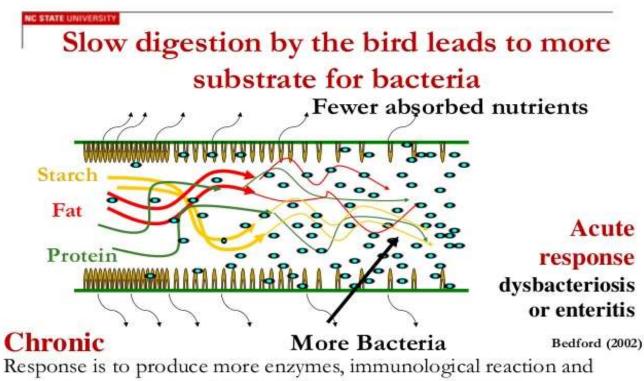
- Inhibition of Intestinal Cell (Villi Length & Crypt depth) Proliferation – Aflatoxin B1 & T2 Toxin
- Impact Nutrient Absorption – Ochratoxin A, Fumonisins B1 & DON
- Affect Tight Junction Integrity - Ochratoxin A, Fumonisins B1 & DON
- Inhibit Immunoglobulin Production – T2 Toxin & DON
 - Inhibit Production of Cytokines – Fumonisins B1 & DON

Infections and Gut Health

Gut health remain under pressure from both Clinical & Subclinical Infections at any stage of chicken's life

- Bacterial
- Viral
- Parasitic

Mortality may not be high but Performance is always Poor



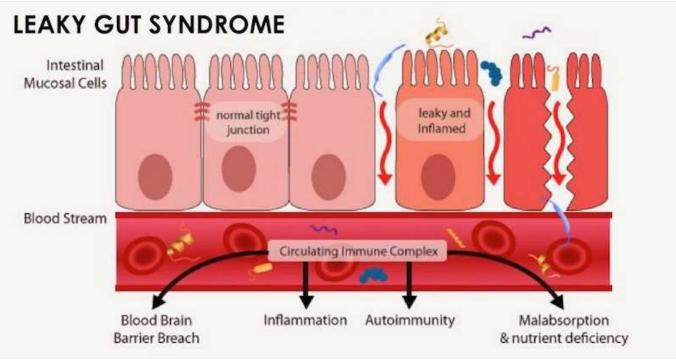
02-08-2020

Effect of Gut Health Compromise

Deviation in Microbiota results Malabsorption

- Poor absorption of Fat, Protein & Carbohydrate
- More Fat, Protein & Sugar available at hind gut; Caeca
- More nutrients available for microbes

grow a larger intestine. Costly in nutrient - energy terms.


Effect of Gut Health Compromise

Unwanted Microbial

Overgrowth

- Excess Production of Toxic gas like CO2, NH3 & H2S
- Production of Toxic chemical (Amines); irritates gut & reduced body growth
- Inactivation of Bile acid impacting Fat absorption
- Immune reaction leading to Leaky Gut

This leads to further disruption & damage of Intestinal mucosa leading to many more infections

02-08-2020

How to Promote Gut health

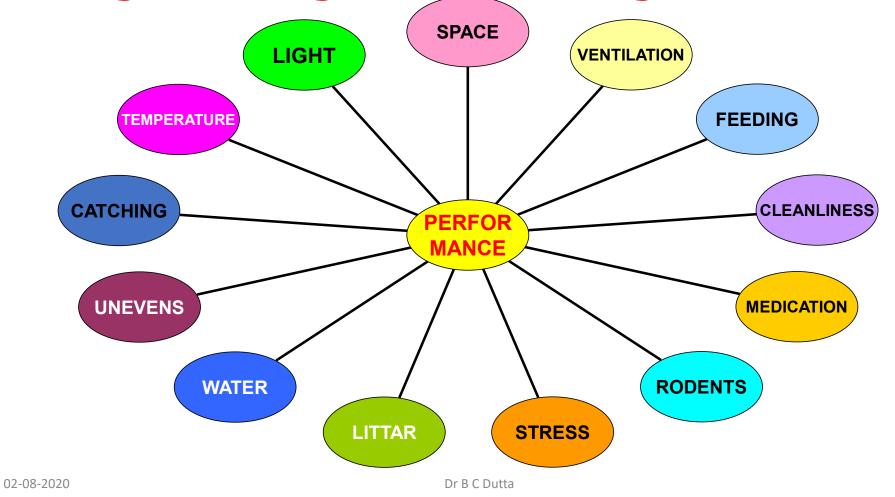
Development

- Gut Tissue
- Gut Immunity
- Gut Microflora

Setting up the gut for the Life ahead

Transition

- Feed Changes
- Vaccination
- Transfer
- Environmental Stress
- Handling


Prevent reduction of nutrient uptake and overgrowth of unfavourable bacteria

Maintenance

- Gut build up
- Stable Microflora
- Promote Integrity

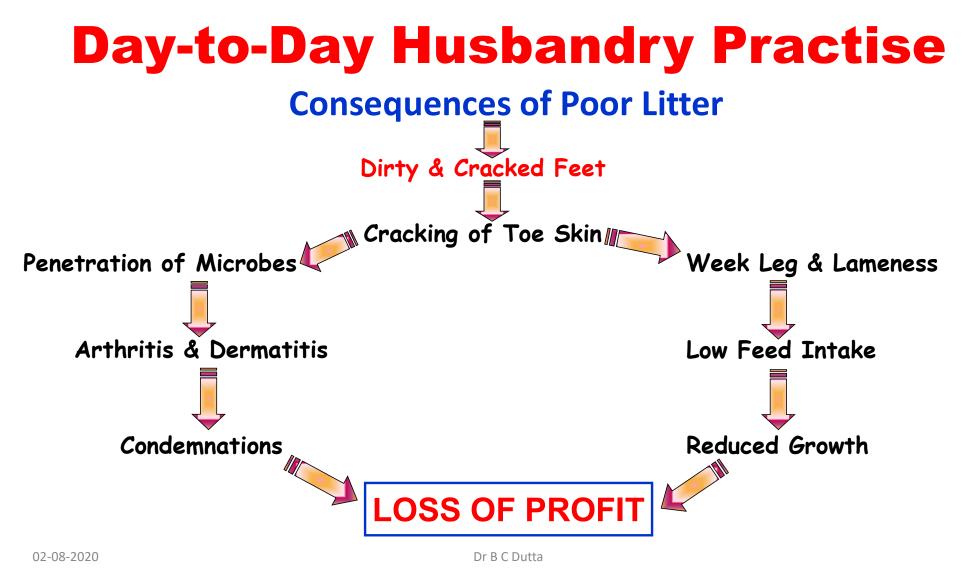
Ensure the Gut is supported to conserve Homeostasis

Day-to-Day Husbandry Practise

Day-to-Day Husbandry Practise LITTER MANAGEMENT

Litter is a harmless, soft, fibrous material used as bedding, which helps facilitate evaporation of moisture & gases from Fecal materials

- Absorb moisture from the droppings quickly
- Absorb less moisture from atmosphere & dry rapidly
- Least tendency to form cakes
- Light in weight, and free from molds
- Non–toxic, bio–degradable, cheap
- & locally available
- Uniform particle size
- Soft and compressible
- Low Thermal Conductivity



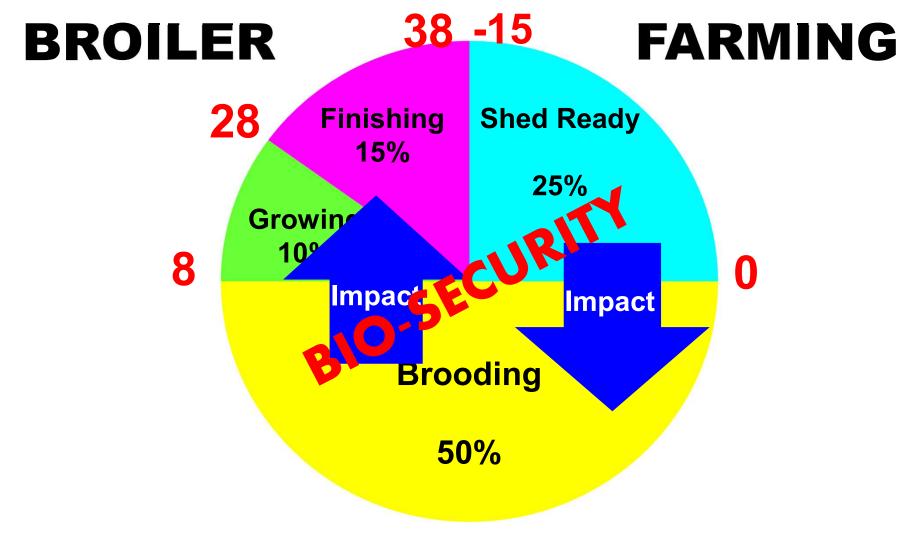
Day-to-Day Husbandry Practise

Causes of Caked Litter

- Humid or Cold Surface
- Insufficient, Non-absorbent or Too Compacted
- High Stocking Density or Over-Crowding
- > Insufficient Ventilation or Poor Air Circulation
- Infections
- Poor Water quality
- Poor Drinker Adjustment resulting Leakage
- Cold Climate
- Feed & Nutrition

Day-to-Day Husbandry Practise

STRESS Management


Avoid Avoidable Stress

Overcrowding

- Poor Ventilation
- Wet Litter
- High Ammonia
- Dehydration
- Poor Management
- Mycotoxin
- Starvation
- Disease

Minimize Un-avoidable Stress

- Extreme Climate; Heat, Chilling, Humidity
- Rapid Growth
- Handling
- Vaccination
- Transportation
- Routine Medication
- Debeaking

THANK YOU